Solid Phase ¹³C NMR Techniques, A New Structural Probe for the Study of Solid Organolithium Compounds

JOHN A. GURAK, JOHN W. CHINN, Jr., RICHARD J. LAGOW*

Department of Chemistry, The University of Texas at Austin, Austin, Tex. 78712, U.S.A.

RAYMOND D. KENDRICK and COSTANTINO S. YANNONI*

IBM Research Laboratory, San José, Calif. 95193, U.S.A.

Received August 27, 1984

The first solid phase NMR spectra are reported for $H_3CLi^6)_4$ and the polylithium organic compound dilithiomethane $(CH_2Li_2^6)_n$. Although ¹³C NMR spectra have been frequently employed in structural studies on organolithium compounds in solution [1, 2 etc.], the solid structures of polylithium organic compounds (and even monolithium compounds) are of particular current interest. Solid phase ¹³C NMR spectra promise to provide a valuable source of structural information.

There is unusual interest in the structures of polylithium compounds such as dilithiomethane [3-6]. Although it may soon be possible to grow crystals of dilithiomethane, its limited solubility has made this initially very difficult. Also it is possible to observe ⁷Li resonance in certain solvents for dilithiomethane, at the present time it has proven impossible to find satisfactory solvents to make natural abundance ¹³C NMR spectra possible for polylithium compounds.

 CH_3Li^6 and CH_3Li^7 were synthesized by reaction of ⁶Li or ⁷Li with $Hg(CH_3)_2$ in ether. Isotopically substituted dilithiomethane was prepared according to an improved version of the Ziegler pyrolysis of methyllithium [6, 7]:

Dilithiomethane

$$(CH_{3}^{*}Li)_{4} \xrightarrow{223-226 \ ^{\circ}C} (CH_{2}^{*}Li_{2})_{n} + (C_{2}^{*}Li_{2})_{n}$$
95-96% 1-2%
$$+ (C_{3}^{*}Li_{4})_{n} + (CH_{3}^{*}Li)_{4}$$
0.5-1% 2-3%

* ⁷Li or ⁶Li isotope

Fig. 1. Proton decoupled solid phase ¹³C NMR spectrum of dilithiomethane. (a) $CH_2(^7Li)_2$ spectrum obtained at -150 °C. (b) $CH_2(^6Li)_2$ ⁶Li decoupled, spectrum obtained at 25 °C. Peak is 10.5 ppm downfield from TMS.

The cross polarization magic angle spinning (CPMAS) NMR technique [8] combines pulsed NMR with high-speed sample rotation and can produce high resolution NMR spectra of a solid material approaching the quality obtained in liquids. The narrow linewidths combined with the high resolution of individual carbon chemical shifts obtained from the CPMAS experiment provide a method for obtaining new information about solid-state structure and dynamics on the atomic level.

The low solubility of polylithium organic compounds such that ⁷Li spectra but not ¹³C spectra are possible in solution makes application of the CPMAS NMR technique to dilithiomethane especially attractive. A detailed account of the CPMAS NMR technique and its chemical application in solids has recently appeared [8].

¹³C NMR spectra of solid $CH_2({}^{7}Li)_2$, $CH_2({}^{6}Li)_2$, $CH_3{}^{7}Li$ and $CH_3{}^{6}Li$ were obtained using ${}^{1}H_{-}{}^{13}C$ CPMAS [8]. Rotors filled with the material were loaded (within seconds) into the spinning apparatus under a strong flow of nitrogen gas after removal from the ampules in which they had been sealed in an argon atmosphere. After loading in the spinner, the samples are continuously bathed in an atmosphere of the helium gas, used for spinning and, if necessary, cooling [9].

The proton-decoupled 13 C NMR spectrum (15 MHz) of CH₂(⁷Li)₂ and CH₃⁷Li are shown in Figs.

© Elsevier Sequoia/Printed in Switzerland

^{*}Authors to whom correspondence should be addressed.

Fig. 2. Proton decoupled solid phase ¹³C NMR spectrum of methyllithium obtained at -150 °C. (a) CH₃⁷Li; (b) CH₃⁶Li, no ⁶Li decoupling; (c) CH₃⁶Li, ⁶Li decoupled. Peak is 16 ppm upfield from TMS.

1(a) and 2(a), respectively. These spectra were obtained at -150 °C, since sensitivity was found to be higher at lower temperatures. Nonetheless, the signal is weak, due to broadening from dipolar coupling with the ⁷Li nucleus. The ⁷Li nucleus has a spin quantum number 3/2 and possesses a sizeable electric quadrupole moment. In general, ¹³C NMR spectral broadening due to dipolar coupling to a quadrupole nucleus cannot be removed either by conventional decoupling techniques, or by magic angle spinning [10]. However, the possibility for removal of this kind of broadening by decoupling or spinning increases as the electric quadrupole moment of the nucleus decreases. Since ⁶Li has a quadrupole moment which is only $\sim 0.5\%$ of that of ⁷Li, it was felt that it might be possible to achieve higher resolution in the ¹³C NMR spectrum of CH₂(⁶Li)₂ and CH36Li using 6Li decoupling in addition to 1H decoupling.

CH₃Li and CH₂Li₂ were synthesized with an enrichment of 100% in the ⁶Li isotope (as previously described) and a CPMAS probe was built with the capability of strong irradiation at the ⁶Li (8.83 MHz), ¹H (60 MHz) and ¹³C (15 MHz) Larmor frequences. The result of a ¹³C CPMAS experiment at ambient temperatures on CH₂(⁶Li)₂ with ¹H and ⁶Li decoupling is shown in Fig. 1(b). The spectrum consists of a single line, 80 Hz full-width at half-maximum. The chemical shift is 10.5 ppm downfield from TMS.

The ¹H and ⁶Li decoupled ¹³C NMR spectrum for CH₃⁶Li is shown in Fig. 2(c). The spectrum consists of a single line with a chemical shift of 16 ppm upfield from TMS. This value is in good agreement with those obtained in solution. The ³C chemical shifts for CH₃⁷Li range from 15 ppm (THF) to 11 ppm (Et₃N) upfield from TMS. The small upfield displacement of the ¹³C chemical shift of methyllithium (relative to methane) was interpreted as evidence for predominent sp³ hybridization of carbon in this species [12]. Furthermore, excess charge density on the carbon was indicated to be small. The downfield ¹³C chemical shift is indicative of diminishing charge density on the carbon-bearing lithium upon complexation [12].

The downfield ¹³C shift in CH_2Li_2 relative to methyllithium may be attributed to an increase in charge density at the methylene carbon with increasing lithium substitution. Electropositive substituents are known to function as effective σ donors [6].

The very small linewidths for $CH_2({}^6Li)_2$ and CH_3 -⁶Li compared with that observed for $CH_2({}^7Li)_2$ and $CH_3{}^7Li$ shows that the strategies of using CH_2 -(${}^6Li)_2$ and $CH_3{}^6Li$ and decoupling 6Li works, and should prove useful for ${}^{13}C$ studies of other organolithium materials. Such studies are currently in progress [13].

The fact that a sharp singlet is observed in the ${}^{13}C$ NMR spectrum of dilithiomethane is highly encouraging. This implies that solid aggregate (CH₂-Li₂)_n may contain only one carbon environment and that the symmetry is very high. This forecasts very favorable conditions for solution of this important and novel structure.

Acknowledgements

We thank Dr. John W. Chinn, Jr. of The University of Texas at Austin for the high-resolution mass spectral analyses. We are grateful for support of this work from the National Science Foundation (CHE-8210708) and for partial support from the Robert A. Welch Foundation (F-700).

References

 (a) T. L. Brown, R. L. Gerteis, D. A. Bafus and J. A. Ladd, J. Am. Chem. Soc., 86, 2134 (1964);
 (b) T. L. Brown, J. A. Ladd and G. N. Newman, J. Organomet. Chem., 3, 1 (1965).

- 2 B. Tecle, W. H. Ilsley and J. P. Oliver, Organometallics, 1, 875 (1982).
- 3 J. A. Gurak, J. W. Chinn, Jr. and R. J. Lagow, J. Am. Chem. Soc., 104, 2637 (1982).
- 4 J. W. Chinn, Jr., F. J. Landro, P. V. R. Schleyer, J. A. Pople and R. J. Lagow, J. Am. Chem. Soc., 104, 4275 (1982).
- 5 J. B. Collins, J. D. Dill, E. D. Jemmis, Y. Apeloig, P. V. R. Schleyer, R. Sieger and J. A. Pople, J. Am. Chem. Soc., 98, 5419 (1976).
- 6 K. Ziegler, K. Nagel and M. Patheiger, Z. Anorg. Allg. Chem., 282, 345 (1955).
- 7 (a) J. W. Chinn, Jr., J. A. Gurak, R. J. Lagow, H. Steinfink and C. S. Yannoni, Inorg. Chem., in press;

(b) L. A. Shimp, J. A. Morrison, J. A. Gurak, J. W. Chinn, Jr. and R. J. Lagow, J. Am. Chem. Soc., 103, 5951 (1981).

- 8 C. S. Yannoni, Acc. Chem. Res., 15, 201 (1982).
- 9 C. A. Fyfe, H. Mossbrugger and C. S. Yannoni, J. Magn. Reson., 36, 61 (1979).
- 10 E. M. Mengerand and W. S. Veeman, J. Magn. Reson., 46, 257 (1982).
- 11 H. Gilman and R. E. Brown, J. Am. Chem. Soc., 52, 3314 (1930).
- 12 L. D. McKeever, R. Waack, M. A. Doran and E. B. Baker, J. Am. Chem. Soc., 91, 1057 (1969). 13 J. A. Gurak, J. W. Chinn, Jr., R. J. Lagow and C. S.
- Yannoni, in preparation.